Course Type	Course Code	Name of Course	L	Т	Р	Credit
DE	NCHD505	Interfacial and Colloidal Phenomena	3	0	0	3

Course Objective

To impart knowledge on fundamentals of interfacial and colloidal phenomena and colloidal interactions between surfaces, particles and surfactants.

Learning Outcomes

Students will gain insight into interfacial and colloidal phenomena and will be able to solve problems encountered in chemical engineering systems.

Unit	Description of Lectures	Lecture	Learning Outcomes
No.		Hrs.	
1.	Introduction: Introduction to colloids, interfaces, surfactants and emulsions, micelle formation.	3	Introduction to colloids interfaces and surfactants
2.	Molecular interaction : Cohesive energy,Lennard Jones potential Charge- Charge, dipole-Charge interactions, Dipole-Dipole interactions van der Waals forces (Keesom, Debye, and London interactions),	6	Introduction to molecular interactions and van der wals forces
3.	Inter-particle forces: Inter-particle forces for various geometries, Concept of disjoining pressure, Basics of surface tension, Surface and interfacial tension, surface free energy,	6	Introductiontointerparticle forces and itsmanifestationthroughdisjoiningpressureandsurface tensionforces
4.	Surface tension Measurement and Statics: surface tension for curved interfaces, surface excess and Gibbs equation, theory of surface tension and contact angle and wetting.	6	Fundamentals of concept of surface tension measurement techniques and allied theories
5.	Interface shape under Equilibrium and Flow dynamics: Young Laplace equation derivation through energy minimization, Interfacial flow, Marangoni flow	6	Fundamentals of interfacial shape and flow dynamics
6.	Surfactants: Thermodynamics of surfactants, micelles and mixed micellar formations.	6	Theoretical knowledge on tthermodynamics of interfaces
7.	Electrokinetic phenomena: Electrical phenomena at interfaces, electrical double layer.	6	Theoretical knowledge on electro kinetic flows
8.	Advanced materials: Advanced and functional interfaces – superhydrophobicity, functional coatings, structural colors, nano– adhesives, nanocomposites.	3	Exposure to Advanced and functional interfaces

Total	42	

Textbooks:

- 1. Israelachvilli J.N. (2011), Intermolecular And Surface Forces, Elsevier
- 2. Hiemenz, P. C., and Rajagopalan, R. (1997), *Principles of Colloid and Surface Chemistry*, Marcel Dekker.
- 3. Myers, D. (1991), Surfaces, Interfaces, and Colloids: Principles and Applications, Wiley.

Reference books:

- 1. Masliyah, J. H. and Bhattacharjee S. (2005), *Electrokinetic and Colloid Transport Phenomena*, Wiley.
- 2. Rosen, M. J. (2004), Surfactants and Interfacial Phenomena, Wiley-Interscience